برج خنک کننده



انواع شیر مورد استفاده در برج خنک کننده شامل سه تیپ شیر می باشد : شیر های قطع جریان ، شیر های کنترل جریان و شیر های آب جبرانی. شیر ها برای کنترل و تنظیم جریان آب برج خنک کننده به کار می روند. نوع و تعداد شیر مورد استفاده در سیستم برج خنک کن به نوع و سایز برج خنک کننده و همچنین کاربری کولینگ تاور وابسته است. در ادامه این مطلب هر کدام از انواع شیر را مورد بررسی قرار می دهیم و استفاده آن را در انواع برج های خنک کن جریان متقاطع یا جریان مخالف بررسی خواهیم کرد.

 

بررسی انواع شیر مورد استفاده در برج خنک کننده

به بررسی انواع شیر های مورد استفاده در کولینگ تاور می پردازیم:

 

شیر قطع جریان

یکی از انواع شیر قطع جریان می باشد ، این نوع از شیر ها معمولا از نوع پروانه ای یا کشویی می باشند و در هر دو نوع برج خنک کننده جریان متقاطع یا برج خنک کننده جریان مخالف مورد استفاده قرار می گیرند. از این شیر ها برای کنترل جریان برج هایی با چند جریان ورودی و یا قطع جریان در برج های چند سلولی استفاده می شود. به دلیل وجود شیر های تنظیم جریان این نوع شیر ها به ندرت در برج های خنک کننده جریان متقاطع به کار می روند و استفاده از آن ها در این نوع برج خنک کننده اجباری نیست. به عنوان یک قانون ، شیر های قطع جریان در محل از لوله کشی قرار گرفته است که مسئولیت آن به عهده کاربر کولینگ تاور است. در برج های خنک کننده بتونی و پیچیده تر ممکن است برخی از شیر های کنترل جریان آب در داخل سیستم یا داخل برج خنک کننده تعبیه شده باشد. به طور کلی وقتی فشار آب پایین باشد از شیر های کشویی در این گونه موارد استفاده می شود.

 

شیر های مورد استفاده در برج خنک کننده شامل سه تیپ شیر می باشد : شیر های قطع جریان ، شیر های کنترل جریان و شیر های آب جبرانی.  به طور کلی شیر ها برای کنترل و تنظیم جریان آب برج خنک کننده به کار می روند.

 

شیر کنترل جریان

در دنیای اصطلاحات برج خنک کننده این شیر ها به عنوان شیر های خروجی به اتمسفر هستند. این شیر ها در انتهای مسیر لوله کشی قرار می گیرند و جهت تنظیم و برابر سازی جریان در سلول ها و بخش های برج های خنک کننده جریان متقاطع به کار می روند. همچنین می توان هر کدام از شیر ها را قطع نمود تا سرویس در آن ناحیه انجام شود در حالی که آب در مابقی سلول ها در حال توزیع است.

 

انواع-شیر-مورد-استفاده-در-برج-خنک-کننده

 

شیر آب جبرانی

این شیرها برای جبران آب از دست رفته در کولینگ تاور به کار می روند ، این شیر معمولا توسط سازنده برج خنک کننده روی دستگاه تعبیه می شود و در غیر اینصورت به عهده کاربر برج خنک کن است که آن را در محل مناسب نصب نماید. جهت مطالعه بیشتر به مطالب " لوله کشی برج خنک کننده " و " انتخاب پمپ برج خنک کن " مراجعه فرمایید.

 

http://badrantahvie.com/cooling-tower-valves/


عملکرد برج خنک کننده در زمستان در واحد های صنعتی بسیار حائز اهمیت می باشد که در ادامه به بررسی آن می پردازیم. برج های خنک کن طوری طراحی شده اند که بیشترین سطح تماس میان آب و هوا را در طولانی ترین زمان ایجاد نمایند. این عملکرد گرچه در تابستان ایده آل است ولی در زمستان ممکن است موجب یخ زدن کولینگ تاور شود، بنابراین جهت کنترل عملکرد برج خنک کننده در زمستان باید ابزاری جهت عملکرد کولینگ تاور وجود داشته باشد. میزان یخ قابل قبول در برج خنک کن لایه نازک یخی است که در ناحیه ورود هوا و لوور ها می نشیند.

این مقدار یخ زدگی در برج خنک کن قابل قبول است و نگرانی در مورد سازه کولینگ تاور و یا عملکرد برج خنک کن ایجاد نمی نماید. اما اگر مقدار یخ ایجاد شده قابل توجه باشد و بروی پکینگ ها و ساپورت ها پیشروی کند برای سازه برج خنک کننده مشکل ساز می شود.

این یخ ایجاد شده روی پکینگ ها ( سطوح انتقال حرارت ) را پوشانده و عملکرد برج خنک کن را مختل می کند در برخی اوقات یخ بروی سازه کولینگ تاور پیشروی می کند و ستونها و بدنه را مورد تهدید قرار می دهد.

 

بررسی عملکرد برج خنک کننده در زمستان

متد های کنترل یخ زدگی در برج خنک کننده بسته به نوع برج خنک کن ، سیستم توزیع آب و تجهیزات مکانیکی متفاوت است. ولی موارد زیر برای همه شرایط صحیح است:

 

  • پتانسیل یخ زدگی با میزان هوای وارد شده به کولینگ تاور تغییر می کند، در صورتیکه جریان هوا کاهش یابد پیشروی یخ کاهش پبدا می کند و یخ زدگی عقب نشینی می کند.
  • در برج های خنک کننده ای که جریان هوا غیر قابل کنترل است ( مانند برج های جریان طبیعی یا برج های خنک کننده هذلولی ) پتانسیل یخ زدگی به صورت مع با مقدار بار حرارتی تغییر می کند ، کم شدن مقدار بار حرارتی احتمال یخ زدگی را بالا می برد.
  • پتانسیل یخ زدگی با مقدار آب پاشیده شده بروی پکینگ ها رابطه عکس دارد ، کاهش مقدار آب در گردش میزان یخ زدگی را افزایش می دهد.

 

بیشتر برج های خنک کننده جریان اجباری قابلیت کنترل دبی هوای ورودی را دارند ، امکان تغییر دور پروانه و یا خارج کردن تعدادی از فن ها در این نوع برج های خنک کننده دیده می شود، همچنین برای برج های خنک کننده ای که برای کار در زمستان طراحی می شوند قابلیت کنترل دبی آب هم دیده می شود ، که هم کنترل آب در جریان و هم کنترل دبی هوای در جریان بسیار کمک کننده خواهد بود، ولی در برج خنک کننده جریان طبیعی امکان کنترل میزان هوای ورودی امکانپذیر نمی باشد.

 

برج های خنک کن طوری طراحی شده اند که بیشترین سطح تماس میان آب و هوا را در طولانی ترین زمان ایجاد نمایند. این عملکرد گرچه در تابستان ایده آل است ولی در زمستان ممکن است موجب یخ زدن کولینگ تاور شود، بنابراین جهت کنترل عملکرد برج خنک کننده در زمستان باید ابزاری جهت عملکرد کولینگ تاور وجود داشته باشد.

 

جلوگیری از یخ زدگی برج خنک کننده در زمستان

  • کنترل دبی هوای ورودی : کنترل میزان دبی هوای ورودی ابزار با ارزشی برای کنترل میزان یخ زدگی در برج خنک کننده است. بوسیله این ابزار می توان در زمستان میزان هوای سرد وارد شده به برج خنک کن را کاهش داد و باعث آب شدن یخ های تشکیل شده در برج خنک کن بوسیله آب گرم در جریان شد. فن هایی با سرعت دورانی حداکثر هیچ کمکی نمیکنند ولی فن هایی دو سرعته با عملکرد در دور پایین در زمستان موجب کاهش یخ زدگی خواهد شد. اما بهترین نوع سیستم استفاده از اینورتر و قابلیت تغییر دور پروانه می باشد که با کاهش یا افزایش دور پروانه اجازه یخ زدن آب را نمی دهد. در برج های چند سلولی می توان یک یا تعدادی از پروانه ها را خاموش کرد تا میزان هوای ورودی به برج خنک کن کاهش یابد. در صورت یخ زدگی شدید در ناحیه ورود هوا لازم است تا برای مدتی کوتاه پروانه یه صورت برعکس کار کند تا هوای گرم را به سمت لوور ها هدایت کند و یخ ها را آب کند. این روش باید برای مدت بسیار کوتاه انجام شود تا موجب یخ زدن فن استک ، پروانه ها و یا تجهیزات مکانیکی نشود. در برج های چند سلولی هرگز یک یا چند فن به صورت برعکس به گردش درنیاید بلکه همه با هم باید برعکس شروع به کار کنند ، در غیر اینصورت ممکن است بخار خارج شده از یک فن به داخل فن با چرخش عکس کشیده شود و یخ زدگی شدید ایجاد کند.
  • کنترل دبی آب ورودی : در برج های خنک کننده ای که جهت فعالیت در زمستان طراحی می شوند سیستم توزیع آب باید طوری طراحی شود که امکان تغییر و تمرکز پاشش آب به کناره ها ( نواحی ورود هوا ) را داشته باشد. این نکته در برج های خنک کننده با جریان هوای طبیعی که امکان کنترل هوا وجود ندارد بسیار با اهمیت است. در این روش آب گرم به نواحی کناره های برج که احتمال یخ زدگی بالا است پاشیده می شود. هنگام عملکرد برج خنک کننده در زمستان هنگام استارت اولیه  آب موجود در تشت آبسرد ممکن است بسیار سرد و در حال انجماد باشد بنابراین لازم است قبل از به گردش انداختن آب مقداری از آب گرم ورودی به تشت برج خنک کن بای پس شود تا از یخ زدن آب جلوگیری کند. حتی در هنگام کار هم می توان مقداری از آب گرم را به تشت برج خنک کننده بای پس نمود تا دمای آب تشت در دمای مناسبی قرار گیرد. انتقال آب گرم به تشت در هنگام کار در برج های خنک کننده جریان طبیعی پیشنهاد نمی شود زیرا موجب کاهش آب جریان یافته بروی پکینگ ها شده و خود موجب یخ زدگی می شود. همچنین انتقال آب گرم به تشت در هنگام کار در برج های خنک کننده جریان اجباری زمانی توصیه می شود که امکان کنترل دبی هوای ورودی وجود داشته باشد و این مقدار نباید بیشتر از پنجاه درصد آب در گردش باشد.

 

در مجموع تفاوتی بین پتانسیل برج های خنک کننده جریان متقاطع با جریان مخالف در یخ زدگی وجود ندارد، ولی در برج های خنک کننده جریان مخالف یخ زدگی در نواحی پر قدرت سازه برج خنک کن اتفاق می افتد و یخ زدایی آن مشکل تر است اما در برج های خنک کننده جریان متقاطع آب از لبه ی مستعد یخ زدگی عبور می کند و احتمال یخ زدگی پایین است. در نهایت بر عهده کاربر کولینگ تاور است تا با استفاده از همه یا هر یک از روش های اعلام شده از بروز یخ زدگی در برج خنک کننده جلوگیری نماید و عملکرد برج خنک کننده در زمستان را تضمین نماید. جهت مطالعه بیشتر می توانید به مقاله ” نگهداری برج خنک کننده در زمستان ” مراجعه فرمایید.

 

http://badrantahvie.com/cooling-tower-operation-in-freezing-weather/


اصطلاحات برج خنک کننده شامل مجموعه اصطلاحات فنی وکلماتی است که در دانش و صنعت برج خنک کننده به کار می رود. جهت استفاده و بهره برداری مناسب از سیستم برج خنک کننده است باید با پارامتر ها و مسائل فنی برج خنک کننده آشنا بود ، بنابراین در این مقاله سعی کردیم فهرستی از لغاتی که در صنعت برج خنک کن مورد استفاده قرار می گیرند و دارای مفاهیم فنی هستند تهیه کنیم و در اختیار همراهان گرامی شرکت بادران تهویه صنعت قرار دهیم ، یادآور می شویم که برخی از این اصطلاحات تنها در صنعت برج خنک کننده به کار می روند و واحدی برای آن ها تعریف شده است که بیشترین کاربرد را دارد ، این لیست به روز می شود.

 

بررسی اصطلاحات برج خنک کننده

 

 ACFMدبی حجمی واقعی مخلوط هوا و بخار ، واحد: فوت مکعب بر دقیقه

Air Horsepower خروجی توان فن ( در دبی هوای مشخص و مقاومت مشخص ) واحد: اسب بخار

Air inlet ناحیه ورود هوا

Air rate جریان جرمی هوای خشک در هر فوت مربع ، واحد : پوند بر فوت مربع در ساعت ، نشانه G

Air travel فاصله ای که هوا از میان پکینگ عبور می کند

Air velocity سرعت مخلوط بخار و هوا ، واحد: فوت در دقیقه ، نشانه V

Ambient wet-bulb Temperature دمای مرطوب محیط

Approach اختلاف دمای آب سرد خروجی از برج خنک کننده و دمای مرطوب محیط

Atmospheric حرکت آزاد هوا در برج خنک کننده

Automatic Variable-Pitch fan نوعی از فن که هاب آن دارای مکانیزمی است که اجازه می دهد تا تیغه های فن به صورت همزمان و اتوماتیک تغییر زاویه دهند ، این پروانه ها برای کنترل ظرفیت دستگاه و صرفه جویی در مصرف انرژی به کار می روند.

Basin تشت آب سرد برج خنک کننده

Basin curb ارتفاع تشت آب سرد برج خنک کننده

Bay فاصله بین فریم های متوالی

Bent  هر واحد فریم شامل ستون ، بست و نگه دارنده ها

Bleed-Off  عمل بلو دان  یا  زیر آب برج خنک کننده 

Blow down تخلیه درصدی از آب جهت کنترل میزان املاح و سختی ها ، واحد: متر مکعب در ساعت

Blower  فن سانتریفیوژ دمنده ، برای فشار استاتیکی بالا

Blowout پرتاب آب به بیرون

Brake Horsepower مقدار توان واقعی الکتروموتور ، واحد: اسب بخار ، نشانه bhp

Btu مقدار گرمای مورد نیاز برای بالا بردن یا پایین آوردن دما به میزان یک درجه فارنهایت برای یک پوند آب ( واحد انگلیسی انتقال گرما

Capacity  مقدار دبی آب گالن در دقیقه که برج خنک کننده در اپروچ و رنج و دمای مرطوب مشخص می تواند خنک کند

Casing بدنه خارجی برج خنک کننده به غیر از لوور ها

Cell یک واحد برج خنک کننده که می تواند به تنهایی و به صورت مستقل با دبی و جریان هوای مشخص کار کند ، دارای دیواره و پارتیشن مشخص است و ممکن است دارای یک یا چند فن و سیستم توزیع آب باشد

Chimney بدنه برج خنک کننده هذلولی

Circulating water rate مقدار دبی آب در گردش ، واحد: گالن در دقیقه

Cold water temperature دمای آب خروجی از برج خنک کننده ( بدون اثر آب جبرانی و زیرآب ) ، واحد: فارنهایت ، نشانه CW

Collection basin تشتی که آب در آن جمع شده و سپس به سوی پمپ مکش می شود.

Counterflow جهت جریان هوا در پکینگ ها در خلاف جهت جریان پاشش آب است.

Distribution basin در برج های جریان متقاطع به تشت توزیع آب گرم می گویند.

Distribution system  قسمت هایی از برج خنک کن که در توزیع آب گرم نقش دارند مانند لوله ها و نازل ها و

Double flow هنگامی که در برج خنک کننده جریان متقاطع آبگرم از دو ناحیه وارد کولینگ تاور شود.

Drift  پرتاب قطرات آب به بیرون از برج خنک کننده همراه جریان هوا ، درصدی از دبی در گردش ، واحد: گالن در دقیقه

Drift eliminators قطعه ای که دارای مسیر های Z شکل است که هوا از میان آن عبور کرده ولی اجازه عبور قطرات آب را نمیدهد و به داخل دستگاه باز می گرداند.

Driver درایو الکتروموتور فن

Dry-bulb temperature دمای خشک وارد شده به برج خنک کن، واحد: فارنهایت ، نشانه  DB

Entering Wet-bulb temperature دمای مرطوب هوایی که وارد کولینگ تاور می شود ( شامل باز گردش هوا ) ، این دمای مرطوب در ناحیه ورود هوا به برج خنک کننده اندازه گیری می شود، واحد: فارنهایت ، نشانه EWB

Evaluation ارزیابی هزینه خریداری و نصب و راه اندازی برج خنک کننده ، شامل هزینه اولیه برج خنک کننده ، هزینه اجرا ، راه اندازی ، هزینه نگهداری و تعمیرات

Evaporation loss میزان آب تبخیر شده در پروسه خنک شدن

Exhaust wet-bulb temperature دمای مرطوب خروج هوا

Fan cylinder قسمت شکل سیلندر یا ونتوری که فن قرار می گیرد ، نام دیگر آن فن استک برج خنک کننده است.

Fan deck سطح بالای برج خنک کننده به غیر از تشت توزیع آب گرم

Fan pitch زاویه ای که تیغه های پروانه با صفحه دوران دارند ، واحد: درجه

Fan scroll بدنه حونی فن سانتریفیوژ

Fill سطوح انتقال حرارت داخل برج خنک کننده ، به نام پکینگ شناخته می شود.

Fill cube حجم پکینگ در هر یونیت ، واحد : فوت مکعب

Fill deck ساپورت پکینگ

Film sheet برگ پکینگ فیلمی

Float valve شیر شناور آب جبرانی

Flow control valves شیر های دستی تنظیم آب ورود به برج خنک کننده

Flume مجرای گذر آب

Fogging بخار آشکار خارج شده از کولینگ تاور

Forced draft هرگاه حرکت هوا درون برج خنک کننده به وسیله فنی که در ناحیه ورودی قرار داشته باشد، انجام شود.

Gear reducer کاهش دور

Heat load کل گرمایی که برج خنک کننده در واحد زمان از آب در گردش حذف می کند. واحد Btu در دقیقه

Height ارتفاع برج خنک کننده

Hot water temperature دمای آب گرم ورود به کولینگ تاور ، واحد: درجه فارنهایت ، نشانهHW

Hydrogen ion concentration غلظت یون هیدروژن

Induced draft هرگاه حرکت هوا درون برج خنک کننده به وسیله فنی که در ناحیه خروجی قرار داشته باشد، انجام شود.

Inlet wet-bulb temperature دمای مرطوب هوای ورودی به برج خنک کن

Interference ایجاد تداخل منبع حرارت خارجی با هوای ورودی به برج خنک کننده

شرکت های سازنده برج خنک کننده مجموعه های صنعتی هستند که در زمینه طراحی ، مهندسی و ساخت برج های خنک کننده فعالیت می کنندبرج خنک کننده یکی از پر کاربردترین دستگاه های خنک کننده می باشد که به صورت وسیع در صنایع مختلف مورد استفاده قرار می گیرد. بسیاری از شرکت های با سابقه و نام آشنا در کشور های پیشرفته صنعتی مانند شرکت ابارا ( ژاپن ) و شرکت مارلی ( آمریکا ) در زمینه تولید و بروز رسانی صنعت برج های خنک کننده اقدام می کنند. تولید برج های خنک کننده در ایران نیز با توجه به نیاز صنایع کشور از حدود پنجاه سال پیش آغاز شده و به موازات پیشرفت تکنولوژی به مرور زمان اصلاح و تغییر یافته است.

 

بررسی شرکت های سازنده برج خنک کننده

برج های خنک کننده سابقا به طول کامل از جنس چوب ساخته می شدند که چوب به عنوان متریال ساده و در دسترس نقش حیاتی در انتقال گرما ایفا می کرد. بعد ها از ورق های فی در ساخت بدنه و اسکلت برج خنک کن استفاده شد که استحکام بالاتری داشت. با پیشرفت علم و تکنولوژی در شرکت های سازنده برج خنک کننده ، فایبرگلاس که یک نوع کامپوزیت می باشد جای ف را گرفت و به جای سطوح انتقال حرارت چوبی از پلاستیک ها استفاده شد. فایبرگلاس برخلاف ف مقاومت بیشتری در برابر محیط مرطوب و خوردنده از خود نشان میداد و پلاستیک ها با فرم دهی مناسب عمر و راندمان بالاتری از چوب داشتند. امروزه کارخانجات تولید برج های خنک کننده دارای بخش های مختلفی هستند که به آن اشاره می کنیم:

 

  • واحد فایبرگلاس : مهمترین و بزرگترین بخش کارخانه تولید برج خنک کن واحد فایبرگلاس است. در این واحد قطعات فایبرگلاس با روش لایه گذاری دستی و یا استفاده از چاپرگان تولید می شوند و جهت تکمیل فرآیند ساخت و افزایش مقاومت به کوره فرستاده می شوند تا پخت شود.

  • واحد فی : در این واحد که شامل بخش ریخته گری ، تراشکاری و جوشکاری می باشد ، قطعات فی مرتبط با اسکلت و ساپورت های مورد نیاز دستگاه بر اساس نقشه طراحی شده ساخته می شود و سپس در صورت نیاز آبکاری گرم می شود تا در مقابل رطوبت مقاوم باشد.

  • واحد فن سازی : در این بخش پروانه برج خنک کننده که یکی از مهمترین قسمت های دستگاه می باشد ساخته می شودفن برج خنک کننده نقش ایجاد جریان هوا در کولینگ تاور را به عهده دارد ، فن های می توانند از جنس فایبرگلاس ، آلومینیوم یا پلاستیک باشند و فشار استاتیکی و دبی هوای مختلفی داشته باشند.

  • واحد پکینگ : پکینگ برج خنک کننده در واقع قلب دستگاه است که باعث افزایش سطح تماس میان آب و هوا می شوند. این پکینگ ها در انواع مختلف از متریال پی وی سی ، پلی پروپیلن یا پلی اتیلن ساخته می شوند. در نوع متداول فیلمی ورق پی وی سی با فرآینده گرم کردن و مکش فرم داده می شود و سپس ورق ها با چسب پی وی سی در کنار هم قرار می گیرند و بلوک پکینگ را تشکیل می دهند.

  • قطعات تکمیلی و انبار : قطعات تکمیلی شامل الکتروموتور ، گیربکس ، اتصالات پیچ و مهره و … معمولا در شرکت های سازنده برج خنک کننده تولید نمی شوند و از برند های مختلف در بازار تهیه شده و انبار می شوند.

  • واحد مونتاژ : در این بخش قطعات برج خنک کننده طبق نقشه کنار هم قرار داده شده و برج خنک کننده آماده به کار شکل می دهند.

 

جهت مطالعه بیشتر به مطلب ” قیمت برج خنک کننده ” و ” انواع برج خنک کننده ” مراجعه فرمایید.

 

http://badrantahvie.com/cooling-tower-manufacturers


تست عملکرد برج خنک کننده فقط بوسیله اندازه گیری دمای ورود و خروج آب، اندازه گیری دبی آب و اندازه گیری دمای مرطوب محیط امکان پذیر است ، دقت تست به متغیر های زیادی وابسته است که برخی قابل کنترل و برخی غیر قابل کنترل می باشد. جهت تست کد های ASME و CTI وجود دارد که شامل تمام جزئیات و محاسبات می باشد، مشکل ترین قسمت کار به دست آوردن دیتای دقیق از شرایط کار برج خنک کن می باشد ، در مرحله بعدی این نتایج واقعی با مقادیر طراحی شده مقایسه می گردد که منحنی عملکرد برج خنک کننده باید متناسب با منحنی عملکرد اعلام شده توسط سازنده کولینگ تاور باشد.

 

آماده سازی جهت انجام تست عملکرد برج خنک کننده

قبل از تست ، شرایط فیزیکی باید مطابق دستورات زیر باشد:

  • آب در گردش ، سیستم توزیع آب و پکینگ ها باید عاری از مواد خارجی و یا موانع باشد، توزیع آب باید در تمام قسمت های برج خنک کن به صورت یکنواخت باشد. اگر کولینگ تاور دارای سلول های متعدد است توزیع آب در سلول ها نیز باید به صورت یکنواخت انجام شود.

  • قطره گیر ها باید تمیز و در جای خود باشد.

  • ابزار تست و اندازه گیری دما و دبی آب باید به صورت صحیح قرار داده شوند.

  • تمام متغیر های تست باید تنظیم و ثابت نگه داشته شود.

  

ابزار های تست عملکرد برج خنک کننده

ابزار های تست عملکرد برج خنک کننده شامل ابزار های اندازه گیری دما، ابزار اندازه گیری دمای مرطوب، ابزار اندازه گیری دبی آب و ایزار اندازه گیری قدرت الکتروموتور می باشد.

  1. اندازه گیری دبی آب در گردش : اندازه گیری دبی آب در برج خنک کننده اولین اندازه گیری است که به روش های مختلفی انجام پذیر است. معمول ترین آن تعبیه لوله فشار سنج است که دقت خوبی دارد، راه های دیگر تعبیه صفحه اوریفیس ، لوله ونتوری و نازل جریان است که همگی باید کالیبره باشند. می توان با مقایسه منحنی پمپ با منحنی نازل ها نیز نتایج را چک نمود.

  2. اندازه گیری دمای آب : با دماسنج جیوه ای یا سنسور های دما دمای ورود آب و دمای خروج آب از برج خنک کننده اندازه گیری می شود. معمولا مشکلی در اندازه گیری دمای آب گرم وجود ندارد ولی در اندازه گیری دمای آب سرد باید دقت کرد که دمای اندازه گیری شده در محل مناسب و دمای درست باشد، خروجی پمپ معمولا محل مناسبی است.

  3. اندازه گیری دمای هوا : دمای مرطوب با دما سنج های دمای مرطوب اندازه گیری می شود. در اندازه گیری دمای مرطوب باید دقت شود و دستگاه اندازه گیری کالیبره باشد و محل اندازه گیری دمای مرطوب باید همان محل نصب برج خنک کننده باشد. دمای خشک فقط جهت تست برج های خنک کننده جریان طبیعی اندازه گیری می شود.

  4. توان فن : مقدار توان مصرف شده بوسیله فن برج خنک کننده باید اندازه گیری شود، می توان با وات متر یا ولت متر اندازه گیری کرد ولی باید در نظر داشت که در راندمان الکتروموتور ضرب شود.

  5. هد پمپ : هد دینامیک آب ورودی در برج خنک کن در خط مرکزی لوله اندازه گیری شود که حاصلجمع هد استاتیک ، فشار سرعت در نقطه و فاصله عمودی می باشد، اندازه گیری به وسیله مانومتر یا فشار سنج انجام می شود.

 

شرایط عملکرد هنگام تست:

طبق کد های ASME و CTI تست باید در محدوده متغیر های زیر انجام پذیرد. ممکن است تست ها در زمان هایی انجام شود که محدوده های زیر رعایت نشود ولی تست ها باید با صبر و حوصله مجددا در زمان های مناسب در تابستان تکرار شود.

دبی آب : ۱۰ درصد بیشتر یا کمتر از عدد طراحی

رنج خنک کاری : ۲۰ درصد بیشتر یا کمتر از مقدار طراحی

بار حرارتی : ۲۰ درصد بیشتر یا کمتر از مقدار طراحی

دمای مرطوب محیط : ۱۰ درجه فارنهایت بیشتر یا کمتر از مقدار طراحی

سرعت باد : به طور کلی کمتر از ۱۰ مایل بر ساعت

قدرت فن : ۱۰ درصد بیشتر یا کمتر از مقدار طراحی

 

انجام تست :

دقت تست وابسته به شرایط اعلام شده است ، عواملی که قابل کنترل است باید کنترل شوند و عوامل دیگر باید در زمان مناسب انجام شوند همچنین زمان انجام تست باید یک ساعت پس از ثابت شدن پارامتر ها انجام شود

 

ارزیابی نتایج تست :

نتایج باید با مقادیر اعلام شده توسط سازنده و یا منحنی های ارائه شده تطبیق داشته باشد و راندمان برج خنک کننده مناسب باشد.

http://badrantahvie.com/cooling-tower-thermal-performance-testing/



راه اندازی برج خنک کننده مدور ( سری RF ) با توجه به سیستم توزیع آب دورانی و خصوصیات خاص دارای نکات مهمی می باشد که باید رعایت شود. برج های خنک کننده سری RF دارای بدنه ای به صورت بطری شکل می باشند ، بازگشت به تاریخچه این نوع دستگاه نشان می دهد که این طراحی هندسی اولین بار در کشور آمریکا انجام شد و در اصل برای مناطقی در ایالات متحده که دارای باد شدید هستند در نظر گرفته شده بود زیرا در مقابل جریان باد شدید به صورت آیرودینامیک عمل کرده و ایستایی بالایی دارد. با توجه به شکل هندسی مدور نیاز بود که سیستم توزیع آب دورانی هم طراحی شود که به صورت کلگی در وسط و لوله های توزیع آب در حال دوران طراحی شد. حال به بررسی نکات راه اندازی برج خنک کننده گرد می پردازیم.

 

اقدامات مورد نیاز جهت راه اندازی برج خنک کننده مدور

 

·         لوله های آب پخش کن : می بایست کاملاً تمیز باشند تا گرفتگی سوراخها پیش نیاید. موقع نصب لوله ها روی آب پخش کن دقت کنید که پیچ های تنظیم دقیق بسته شوند، بطوریکه لوله ها  کاملاً در مرکز قرار گیرند.

·         کلگی توزیع آب : رسوب و لجن ممکن است جلوی چرخش آب پخش کن را بگیرد. در صورتیکه حرکت آب پخش کن کند شود یا بایستد، با وجودی که مقدار آب در گردش تغییر نکرده باشد ، کله آب پخش کن را برای تمیز کردن و چک کردن باز کنید. وقتی دوباره کله آب پخش کن را می بندید مطمئن شوید که آب داخل بلبرینگ ها نرود و با گریس ضد خوردگی پوشیده شده باشد.

·         هر کثیفی یا زوائد و مواد خارجی را از تشت آب سرد و دریچه های ورود هوا تمیز کنید. بررسی کنید که لوله ها تمیز و فاقد گرفتگی باشند. از ناحیه مکش، تشت آب سرد و سامپ، تفاله ها را جمع آوری کنید.

·         پکینگ برج خنک کننده و تشت آب سرد را بشورید تا کثیفی ها خارج شود. برای شستشو از آب با فشار پایین استفاده شود.

·         سطح تشت و فن را چک کنید تا موازی سطح افق باشند.

·         لوله مرکزی را چک کنید که حتماً عمودی باشد و تمام بازوهای آب پخش کن در یک سطح و عمود بر لوله مرکزی باشند.

·         مطمئن شوید که هیچگونه آشغال یا جسم خارجی در تشت و تشتک وجود ندارد.

 

 

·         کلگی توزیع آب برج خنک کننده را با دست حرکت دهید و مطمئن شوید به راحتی حرکت می کند.

·         مطمئن شوید که بازوهای آب پخش کن فاصله مناسب خنک کننده و بدنه دارند و به آنها برخورد نخواهد کرد.

·         مطمئن شوید فن و الکتروموتور درست نصب شده اند.

·         تمام پیچ و مهره ها را چک کرده تا هیچ قسمت ول و لق نباشد.

·         تشت را از آب پر کنید ، در صورت مشاهده هرگونه نشتی ، آن را رفع نمائید.

·         برق صحیح را به فن وصل کرده و موارد زیر را چک کنید.

الف ) جهت گردش فن را چک کنید، هوا می بایست از دهانه مکش که لوورها هستند مکیده از روی سطوح خنک کننده عبور کرده و به صورت عمودی از بالا خارج شود.

ب ) کابلهای برق استاندارد بوده و درست بسته شده و مسائل ایمنی کاملاً رعایت شده باشند.

·          جریان آب را برقرار کنید و گردش آب پخش کن را چک کنید، هر گونه بی نظمی را رفع نمائید.

·         اتصالات موتور و اتصال زمین را بررسی کنید و مطمئن شوید که محکم متصل شده اند، پوشش جعبه تقسیم را بررسی کنید تا آب بندی باشد.

·         نیروی کشش تسمه را با توجه به شکل و جدول زیر مقایسه و کنترل کنید.

 

 

·         فن برج خنک کننده را با دست بچرخانید تا مطمئن شوید که به نرمی حرکت می کند. زاویه شیب پره های فن را چک کنید. به شکل زیر توجه کنید.

·         هنگامیکه از بالا به برج نگاه می شود، فن باید در جهت عقربه های ساعت گردش کند. در غیر این صورت در جعبه تقسیم موتور، جای دو اتصال از سر اتصال های الکتریکی موتور را تغییر بدهید.

 

 

·         سیستم توزیع آب برج خنک کننده را با دست بچرخانید تا مطمئن شوید که به نرمی حرکت می کند. توجه کنید که مطابق شکل زیر نازل های خروج آب در جهت و زاویه مناسب قرار داشته باشند.

 

 

·         کنترل کنید که لوله های توزیع آب به آزادی گردش می کنند. این سیستم هنگامیکه از بالا دیده شود باید در جهت عقربه های ساعت حرکت کند. سرعت دوران باید با اعداد جدول زیر تطبیق داشته باشند.

 

 

·         مطمئن شوید که شیر شناور آب جبرانی در جای خود قرار دارد و به خوبی کار می کند.

·         از محکم بودن پیچ هایی که موتور و کاهنده سرعت را به نگهدارنده ها و نگهدارنده ها را به چارچوب برج و خود قطعات چارچوب را به یکدیگر متصل می کنند، اطمینان حاصل کنید.

·         تشت برج خنک کننده و سیستم گردش آب را تا رسیدن سطح آب به میزان مطلوب پر کنید. شیر شناور باید طوری تنظیم شود که آب را در سطح لازم نگه دارد، تشت آب سرد باید تا سطح سر ریز پر شود. به شکل زیر توجه کنید.

 

 

·         عمر و عملکرد بیشینه بستگی به نگهداری و رسیدگی به تمام قطعات برج و سیستم مربوطه دارد. در بیشتر موارد یک بازرسی کلی از برج در هر روز، کافی است. ما برای اطمینان از موثر بودن و کارکرد ایمن برج خنک کننده، استفاده از یک برنامه بازرسی مرتب را پیشنهاد می کنیم.

 

http://badrantahvie.com/bottle-type-cooling-tower-start-up/



انتخاب تجهیزات برج خنک کن متناسب با کیفیت آب به معنی طراحی، انتخاب و تطبیق متریال مورد استفاده در ساخت تجهیزات برج خنک کننده متناسب با کیفیت منبع آب موجود جهت گردش در برج خنک کن می باشد. نحوه این انتخاب باعث می شود که در مراحل عملیات آبی و سیکل تغلیظ بهترین عملکرد و پایداری در برج خنک کننده را داشته باشیم. مهم نیست چه منبع آبی داریم با انتخاب صحیح تجهیزات برج خنک کننده می توان اثرات ترکیبات و ناخالصی های موجود در آب را به حداقل رساند. محافظت از برج خنک کننده و اجزای آن اولین الویت طراح ، سازنده و کاربر می باشد.

  

مراحل انتخاب تجهیزات برج خنک کن متناسب با کیفیت آب

 

·         بررسی انواع برج خنک کننده جهت تشخیص تناسب متریال ساخت با اثر کیفیت آب روی برج خنک کننده

·         بررسی ناخالصی های موجود در منبع آب مورد استفاده

·         بررسی و انتخاب عملیات آبی مورد نیاز در سیستم

·         انتخاب نوع تجهیزات برج خنک کننده ، انتخاب نوع عملیات آب و سیکل تغلیظ

 

انتخاب تجهیزات برج خنک کننده متناسب با کیفیت آب اقدام حیاتی می باشد ، همچنین کیفیت آب در گردش درون برج خنک کننده نیز نوع عملیات آبی در برج خنک کننده را مشخص می کند. لیست زیر اثر کیفیت آب بروی متریالی را نشان میدهد که به طور معمول در برج های خنک کننده به کار می رود و سپس راه های مدیریت و محافظت آن را پیشنهاد می دهد.

 

چوب : باید در برابر پوسیدگی و یا حمله مواد شیمیایی محافظت گردد.

 

فولاد : مستعد خوردگی در اثر سختی آب بالا ، ذرات معلق ، زیست توده ، ناخالیصی های سنگین / استفاده از بازدارنده های شیمیایی ، افزایش دبی آب و کاهش ماند آب درون برج خنک کننده ، کاهش سیکل تغلیظ

 

آهن گالوانیزه ( با روی و مس ) : مستعد خوردگی در اثر سختی آب بالا ، مقدار pH زیر ۶٫۵ یا مقدار pH بالای ۸٫۵ / سیکل تغلیظ را کاهش دهید ، با افزودنی های شیمیایی مقدار pH را تنظیم کنید.

 

استنلس استیل ۳۰۴ : مستعد خوردگی هنگام تجمع کلراید ، زیست توده سریع موجب حفره حفره شدن می شود ، خوردگی در کلراید بالاتر از ۲۰۰ میلی گرم در لیتر ، سطوح تمیز  تا ۱۰۰۰ میلیگرم کلراید را تحمل می کند / استفاده از بازدارنده های خوردگی احتمال خوردگی را کاهش می دهد ، نگخ داشتن اکسیدان مثبت موجب تشکیل فیلم اکسید شده و تجمع زیست توده را کاهش می دهد ، نیترات ها موجب کاهش احتمال خوردگی می شود.

 

استنلس استیل ۳۱۶ : مانند استنلس استیل ۳۰۴ در مقابل کلراید ضعیف هستند ، تا مقدار کلراید ۵۰۰۰ میلی گرم در لیتر را تحمل می کند و در سطوح تمیز تا ۳۰۰۰۰ میلیگرم در لیتر کلراید را تحمل می کند / عمل به مانند استنلس استیل ۳۰۴

 

آلیاژ مس : مستعد خوردگی در اثر آمونیا و سختی آب بالا. آمونیا بالاتر از ۰٫۵ میلیگرم در لیتر مانند NH3 می تواند باعث ترک و خوردگی شود و به زیست توده ها کمک می کند تا باعث خوردگی در لایه های زیرین آلیاژ مس شوند. آلیاژ های مس نیکل به ترک خوردن مقاوم هستند / عملیات آبی استعداد خوردگی را به حداقل می رساند. بازدارنده های خوردگی مانند TTA یا BZT و BBT احتمال ترک خوردن را کاهش می دهند ولی به طور کامل از بین نمی برند ، در این میان BBT از همه موثر تر است.

 

پلاستیک ها : از تجمع رسوب جلوگیری کنید و زیست توده ها را از بین ببرید.

 

جهت مطالعه بیشتر به مطلب ” اثر کیفیت آب روی برج خنک کننده ” مراجع فرمایید.

 

http://badrantahvie.com/matching-cooling-tower-design-with-water-quality/



اثر کیفیت آب روی برج خنک کننده به معنی تأثیر ناخالصی های موجود در آب بروی قطعات ، کیفیت و دوام برج خنک کننده می باشد. تمام آب ها فارغ از منبع آن، دارای ناخالصی های مختلف با مقادیر متفاوت می باشد. برخی از این ناخالصی ها مفید و برخی باید بوسیله عملیات آبی کنترل شود بنابراین جهت استفاده صحیح از آب در برج های خنک کننده نیاز به اطلاعات و دانش کافی می باشد. کیفیت آب بروی سازه و کلیات برج خنک کننده تأثیر گذار است. عملکرد برج خنک کن در سیکل تغلیظ بالا موجب تشکیل رسوب ، خوردگی و گرفتگی می شود. در ادامه به بررسی اثر کیفیت آب بروی برج خنک کننده می پردازیم.

 

اثر-کیفیت-آب-روی-برج-خنک-کننده

 

بررسی اثر کیفیت آب روی برج خنک کننده

 

به مقایسه ناخالصی ها و اثر آن بروی مجموعه برج خنک کننده می پردازیم:

 

سختی Hardness ( مقدار ذرات کلسیم و منیزیم ) : به تشکیل رسوب کمک می کند. نمک های کلسیم از خود خواص غیر حلالی نشان می دهند که این خاصیت با افزایش دمای آب افزایش می یابد. وجود منیزیم هم در آب مشکل ساز است مخصوصا وقتی مقدار سیلیکا هم بالا است که منجر به تشکیل منیزیم سیلیکات شده و در مبدل ها رسوب تشکیل می دهد.

 

آلکالینیتی ( مقدار توان آب برای خنثی کردن اسید ها ) : آلکالینیتی شاخص مهمی برای پتانسیل تشکیل ذرات کربنات کلسیم است.

 

سیلیکا : می تواند رسوب بسیار سخت در برج خنک کننده به وجود آورد که به سادگی قابل پاک کردن نباشد. برای سیلیکا بالاتر از ۱۵۰ پی پی ام اغلب به فیلتر جانبی یا پردازش آب می باشد.

 

استنلس استیل ۳۰۴ : حساس به خوردگی کلراید است وقتی مقدار آن ۲۰۰ میلی گرم در لیتر برسد و رسوب تشکیل شود ، همچنین با رسوب مواد آلی حفره حفره می شود. وقتی سطح ف تمیز باشد تا ۱۰۰۰ میلی گرم در لیتر را تحمل می کند.

 

جمع ذرات معلق جامد TSS ( شامل تمام مواد غیر قابل حل ) : این مواد هم از طریق آب جبرانی وارد می شود و هم در هنگام کار برج خنک کننده تشکیل می شوند. ذرات معلق به مواد آلی میچسبند و خوردگی بوجود می آورند. مقدار TSS را میتوان به وسیله فیلتر جانبی ، پردازش آب و عملیات آبی کنترل نمود.

 

آمونیا : باعث تشکیل رسوب در مبدل ها و پکینگ ها می شود. برای آلیاژ های مس در مقادیر ۲ پی پی ام خورنده است. با کلراید ترکیب می شود و کلرامین بوجود می آورد و اثر گند زدایی کلرین را خنتی می کند. بایوساید برومین در قیاس با آمونیا گران تر است.

 

فسفات : در مقادیر کمتر از ۴ میلیگرم در لیتر و مقدار pH بین ۷ تا ۷٫۵ خاصیت ضد خورندگی از خود نشان می دهد. در مقادیر بالاتر از ۲۰ میلیگرم در لیتر و کلسیم بالاتر از ۱۰۰۰ میلیگرم در لیتر رسوب فسفات کلسیم به وجود می آورد.

 

کلراید : برای اکثر فات خورنده است. برای استنلس استیل حد ۳۰۰ پی پی ام و برای فات دیگر تا ۱۰۰۰ پی پی ام قابل تحمل است.

 

آهن : می تواند با فسفات ترکیب شده و گرفتگی ایجاد کند. می تواند با بازدارنده های خوردگی از تشکیل فسفات کلسیم جلوگیری کرد. آب بازیابی شده مقدار آهن بالاتر از ۰٫۱ میلیگرم در لیتر دارد و عملیات آبی برای آهن مورد نیاز است.

 

نیترات و نیتریت : در مقادیر بالاتر از ۳۰۰ میلیگرم در لیتر از استیل در برابر خوردگی محافظت می کند. نیترات به آلیاژ های مس حمله نمی کند و از آن ها در برابر خوردگی محافظت می کند.

 

زینک :  به فسفات و نیترات جهت محافظت استیل از خوردگی و حفره حفره شدن کمک می کند. در مقادیر بالای ۰٫۵ میلیگرم در لیتر مفید است و در مقادیر بالاتر از ۳ میلیگرم در لیتر با تشکیل رسوب کمک می کند.

 

ارگانیک ها : به میکروارگانیسم ها برای تشکبل رسوب کمک می کنند.

 

فلوراید : در مقدار ۱۰ پی پی ام یا بیشتر و ترکیب با کلسیم باعث تشکیل رسوب می شود.

 

ف های سنگین ( مس ، نیکل و سرب ) : مس و نیکل بروی استیل خوردگی بوجود می آورند و می توانند به سطوح کوئل های استیل نازک آسیب وارد کنند.

 

در این مقاله به بررسی اثر کیفیت آب روی برج خنک کننده پرداختیم جهت مطالعه بیشتر می توانید به مقالات ” انواع بازدارنده خوردگی در برج خنک کننده ” ، ”بازدارنده خوردگی در برج خنک کننده ” و ” عملیات آبی در برج خنک کننده ” مراجعه فرمایید.

 

http://badrantahvie.com/impact-of-water-quality-on-cooling-towers/



بای پس برج خنک کننده به معنی تغییر مسیر بخشی از آب گرم ورودی بدون وارد شدن به برج خنک کننده به مسیر برگشت آب خنک است. این انتقال به روش های مختلفی انجام می شود ، اجرای صحیح بای پس بسیار اهمیت دارد زیراکه نصب غیر صحیح بای پس موجب عملکرد غیر پایدار پمپ و تغییر زیاد دبی آب در کندانسور می شود. تغییرات دبی آب در کندانسور موجب تغییرات دمای آب خنک مخصوصا در چیلر های جذبی می شود و احتمال خرابی در پمپ برج خنک کننده را بالا می برد. در ادامه به بررسی نحوه و تجهیزات مورد نیاز بای پس گرفتن از برج خنک کننده می پردازیم.

روش های بای پس برج خنک کننده

دو روش برای بای پس وجود دارد:

·         بای پس به تشت برج خنک کننده

·         بای پس به لوله مکش

به طور کلی بای پس به تشت برج خنک کننده پیشنهاد می گردد زیرا جریان پایدارتری ایجاد می کند و خطر مکش هوا به پمپ را به حداقل می رساند.

شیر های کنترل که برای بای پس برج خنک کن به کار می روند عبارتند از:

·         سه راهه انتقال یا بای پس

·         دو راهه دو ارتباطه ( معمولا شیر پروانه ای ) که مانند شیر سه عمل می کند

·         شیر دو راه ساده پروانه ای که بروی لوله بای پس قرار می گیرد

باید اشاره کنیم که شیر سه را مختلط نباید برای کنترل بای پس به کار رود.

شیر سه راه مختلط ( دو ورودی یک خروجی ) نباید برای بای پس برج خنک کن به کار رود زیرا باید روی لوله مکش پمپ برج خنک کننده نصب شود و می تواند مشکلاتی در فشار مکش پمپ ایجاد کند. شیر سه راهه انتقال ( یک ورودی دو خروجی ) پیشنهاد می شود به این دلیل که در مسیر برگشت کندانسور ( خروجی پمپ ) نصب می شود و نمی تواند عملکرد پمپ را تحت تأثیر قرار دهد.

به دلیل گران بودن و دسترسی محدود استفاده از شیر سه راهه انتقال برای لوله های ۴ اینچ و پایینتر مشکل است. برای لوله های بزرگتر از ۴ اینچ شیر پروانه دو ارتباطه به کار می رود و همان عملکرد را دارد. شیر پروانه ای دو راهه نیز برای بای پس استفاده می شود.

جهت مطالعه بیشتر به مطالب ” لوله مکش پمپ برج خنک کننده ” و ” کاویتاسیون در پمپ برج خنک کننده ” و ” محاسبه هد پمپ برج خنک کننده ” مراجعه فرمایید.

http://badrantahvie.com/cooling-tower-bypass/


لوله مکش پمپ برج خنک کننده لوله ای است که قبل از پمپ قرار گرفته است و سیال را از برج خنک کننده به پمپ می رساند و پمپ سیال را از این مسیر مکش می نماید و در سرتاسر مسیر لوله کشی به جریان می اندازد. در اجرای لوله کشی برج خنک کننده حتما باید قوانین مربوط به لوله مکش پمپ را در نظر گرفت در غیر اینصورت ممکن است با مشکلات جدی در پمپ از جمله کاویتاسیون ، جریان توربولانت و افت فشار اصطکاک مواجه شویم. در مطلب پیشرو به نکات مهم در طراحی و اجرای مسیر لوله مکش پمپ می پردازیم و آن ها را مورد بررسی قرار می دهیم.

-

قوانین اجرای لوله مکش پمپ برج خنک کننده

حال به بررسی قوانین مهم اجرای لوله مکش پمپ برج خنک کن می پردازیم:

قانون اول : لوله مکش را خالی بگذارید.

از قراردادن انواع شیر های بای پس ، یکطرفه و یا بالانس در مسیر لوله مکش پمپ برج خنک کننده خودداری کنید زیرا این تجهیزات افت فشار در مسیر ایجاد می کنند و مکش آب را دچار مشکل می کنند ، در صورت نیاز به استفاه از این تجهیزات ، آن ها را ده برابر قطر لوله از پمپ فاصله دهید و نصب نمایید ، در ضمن بهتر است تمامی این تجهیزات را در مسیر خروج پمپ قرار دهید و لوله مکش را خالی بگذارید.

-

قانون دوم : لوله مکش و پمپ باید پایین تر از سطح تشت قرار بگیرند.

قرار گرفتن لوله مکش و پمپ در سطح پایینتر از تشت آب موجب می شود که پمپ در هنگام راه اندازی غرق در آب باشد و مشکلی بوجود نیاید. در صورتی که پمپ در هنگام راه اندازی غرق در آب نباشد هوا به پمپ وارد شده و موجب تخریب پمپ و تجهیزات دیگر می شود.

در شکل زیر می بینید که پمپ در هنگام استارت غرق در آب نیست و دچار مشکل می شود ، بنابراین لازم است که از شیر یک طرفه در لوله مکش استفاده شود تا اجازه تخلیه کامل آب به هنگام خاموش شدن پمپ را ندهد و پمپ تا هنگام استارت بعدی غرق در آب بماند. در این حالت به دلیل بالاتر قرار گرفتن پمپ از سطح آب تشت مقدار NPSH کاهش می یابد.

-

قانون سوم : از قرار دادن لوله هواگیر بالاتر از پمپ در لوله مکش اجتناب کنید.

لوله کشی در شکل زیر اشتباه است. در صورتیکه حتما نیاز به قرار دادن لوله هواگیر در مسیر لوله مکش هستید باید اصلاحاتی در لوله کشی انجام دهید، این تغییرات را در شکل بعد می بینید.

-

قانون چهارم : از صافی با مش ریز در مسیر مکش پمپ استفاده نکنید.

صافی ها مثل چاقو دو لبه هستند و در حالیکه برای حفاظت پمپ ها ، شیر ها ، کندانسور ها ، نازل ها در مقابل رسوب و کثیفی استفاده می شوند در صورت استفاده در جای اشتباه مشکل ساز می شوند. استفاده از صافی در مسیر مکش پمپ حرکن کاملا اشتباه است به این دلیل که در صورت گرفتگی صافی ، فشار پمپ تغییر می کند و کاویتاسیون اتفاق می افتد.

این مشکل غیر قابل اصلاح است فقط در صورتی می توان از صافی در مسیر مکش پمپ استفاده نمود که مقدار دهانه مش آن از ۳/۱۶ اینچ تا ۱/۴ اینچ باشد. تمام برج های خنک کننده باید داخل تشت دارای صافی باشند ولی در صورتیکه این صافی آنجا تعبیه نشده است می توان از صافی با سایز مش بالا و افت فشار کم در مسیر مکش پمپ برج خنک کننده استفاده نمود.

صافی با مش ریز معمولا برای حفاظت کندانسور، شیر ها و نازل های آن مورد استفاده قرار می گیرد. صافی با مش ریز باید در مسیر خروجی پمپ معمولا بین پمپ و شیر یکطرفه پمپ قرار گیرد ، این محل کار اپراتور برای تخلیه و تمیز کردن صافی را راحت می کند.

گرفتگی صافی ها در گردش آب برج خنک کننده مشکل ایجاد می کنند. برگ درختان ، تکه های رومه و … معمولا باعث بسته شدن مسیر عبور آب در صافی می شود. در برج های بزرگ می توان به جای زیرآب برج خنک کننده ( بلودان برج خنک کننده ) از سرریز آب برای خروج رسوبات و کثیفی ها از برج خنک کن استفاده نمود.

با تمام تهمیدات باز هم صافی ها دچار گرفتیگی می شوند، می توان از ابزار ساده ای برای تشخیص گرفتگی صافی ها استفاده نمود. با قرار دادن گیج اختلاف فشار در دو سر صافی می توان در صورت گرفتگی صافی تغییرات فشار را مشاهده نمود، حتی می توان برای مقدار مشخص تغییرات آلارم تعریف کرد تا به موقع نسبت به نظافت آن اقدام نمود.

این مقاله کاری بود از بخش فنی شرکت بادران تهویه صنعت امیدواریم با تشریح مسائل و جزئیات دانش برج های خنک کننده گامی در جهت پیشرفت و کمک به صنایع کشور عزیزمان ایران برداریم ، در این راه ما را از نظرات و پیشنهادات ارزشمند خود بهره مند سازید. جهت مطالعه بیشتر می توانید به مقالات ” لوله کشی برج خنک کننده ” ، ” انتخاب پمپ برج خنک کن ” ، ” کاویتاسیون در پمپ برج خنک کننده ” و ” محاسبه هد پمپ برج خنک کننده ” و همچنین وب سایت پمپ برج خنک کننده گراندفوس مراجعه فرمایید.

 

http://badrantahvie.com/cooling-tower-pump-suction-line/



تبلیغات

آخرین ارسال ها

آخرین جستجو ها

مطالعات بازاریابی آموزش برنامه نویسی جابینــا وبلاگی برای کسب درآمد تو خودتی، باور کن تهیه طرح های توجیهی فنی- اقتصادی جوانان انقلابی چاپ و تبلیغات میقات کرونا ویروس-coronavirus (COVID-19) ریاضی پنجم دبستان سرویس و تعمیر انواع کولر گازی اسپلیت در تهران/سرویس کولر گازی در تهران